Steady state conduction one diemension

1- Plane wall

From Fourier equation $q = -KA \frac{dT}{dx}$

$$q dx = -k A dT$$

$$q dx = -k A dT$$
 $q = -KA \frac{(T2-T1)}{(X2-X1)}$ \longrightarrow

$$q = - KA \frac{\Delta T}{\Delta X}$$
 -----1

H.W. If $k = k^{\circ}(1+Bt)$ find q

2- Composite wall (multi layers)

Equation 1 may be rearranged as $q = \frac{(T1-T2)}{\frac{\Delta X}{KA}}$ -----2

In the figure

$$q = \frac{(T1 - T2)}{\frac{\Delta Xa}{Ka A}} = \frac{(T2 - T3)}{\frac{\Delta Xb}{Kb A}} \longrightarrow$$

$$q = \frac{(Tin-Tout)}{\frac{\Delta Xa}{Ka} + \frac{\Delta Xb}{Kb}} - - - 3$$

$$Heat flow = \frac{thermal potential difference}{thermal resistance}$$

A relation quite like Ohms law in electric –circuit theory, in equation 2 the resistance is $\Delta x/kA$, and in equation 3 it is the sum of two terms

$$R1 = \frac{\Delta Xa}{KaA}, \quad R2 = \frac{\Delta Xb}{KbA}, \quad R_{total} = R1 + R2, \quad q = \frac{(Tin - Tout)}{R1 + R2}$$

$$T1 \quad R1 \quad T2 \quad R2 \quad T3$$

For 3 layers

$$q = \frac{(T1-T2)}{\frac{\Delta Xa}{KaA}} = \frac{(T2-T3)}{\frac{\Delta Xb}{KbA}} = \frac{(T3-T4)}{\frac{\Delta Xc}{KcA}}$$

$$q = \frac{(Tin-Tout)}{\frac{\Delta Xa}{KaA} + \frac{\Delta Xb}{KbA} + \frac{\Delta Xc}{KcA}}$$

$$q = \frac{(Tin-Tout)}{R1+R2+R3}$$

$$T1$$

$$R1$$

$$T2$$

$$R2$$

$$T3$$

$$R3$$

$$T4$$

H.W. Draw the electric analog for the figure

Example: One side of copper block 5cm thick ($k = 386 \text{ W/m.}^{\circ}\text{C}$) is maintained at 250 °C. The other side is covered with layer of Fiberglas 2.5 cm thick($k=0.038 \text{ W/m.}^{\circ}\text{C}$)at 35 °C. The total heat through the copper – fiberglass is 52 kw . What is the area of slab.

Solution:

$$\frac{\mathbf{q}}{\mathbf{A}} = \frac{(Tin-Tout)}{\frac{\Delta Xa}{Ka} + \frac{\Delta Xb}{Kb}}$$

R1=
$$\frac{\Delta Xa}{Ka} = \frac{0.05}{386} = 1.295 \times 10^{-4}$$

$$R2 = \frac{\Delta Xb}{Kb} = \frac{0.025}{0.038} = 0.65789$$

$$\frac{q}{A} = \frac{(Tin - Tout)}{R1 + R2} = \frac{(250 - 35)}{1.295 \times 10^{\circ} - 4 + 0.65789}$$

$$\frac{52000}{A} = \frac{215}{0.6580}$$
 \rightarrow A = 159.144 m²

Example: A composite wall is formed of 2.5 cm copper (k = 386 W/m.°C), 3.2 mm layer of asbestos (k = 0.16 W/m.°C) and 5 cm layer of fiberglass (k = 0.038 W/m.°C). The wall is subjected to an overall temperature difference of 560 °C. Calculate the heat flow per unit area through the composite structure.

30°C

$$\frac{\mathbf{q}}{\mathbf{A}} = \frac{(Tin - Tout)}{\frac{\Delta Xa}{Ka} + \frac{\Delta Xb}{Kb} + \frac{\Delta Xc}{KA}}$$

$$\frac{q}{A} = \frac{(Tin-Tout)}{R1+R2+R3}$$

R1=
$$\frac{\Delta Xa}{Ka} = \frac{2.5 \times 10^{-2}}{386} = 6.476 \times 10^{-5}$$

R2=
$$\frac{\Delta Xb}{Kb} = \frac{3.2 \times 10^{4} - 3}{0.16} = 0.02$$

R3=
$$\frac{\Delta Xc}{Kc} = \frac{5 \times 10^{4} - 2}{0.038} = 1.3158$$

$$\frac{q}{A} = \frac{560}{6.476 \times 10 - 5 + 0.02 + 1.3158} = \frac{560}{1.3358} = 419.21 \text{W/m}^2$$

Radial system:

1- Cylinder:

Consider along cylinder of inside radius (ri), outside radius (r°) and length (L) as shown below:

Ti R T°

Fourier law is used by inserting the proper area relation

$$q_r = -k A_r \frac{dT}{dr}$$
 , $A_r = 2 \pi r L$

$$q_r = -2\pi k r L \frac{dT}{dr}$$
 $q_r \frac{dr}{r} = -2\pi k L dt$

$$q_{r} = \frac{2\pi KL(Ti - To)}{\ln{(\frac{ro}{ri})}}$$

$$q_{r} = \frac{(Ti - To)}{\frac{\ln{(\frac{ro}{ri})}}{2\pi KL}}, \quad q_{r} = \frac{(Ti - To)}{R1}, \quad R_{1} = \frac{\ln{(\frac{ro}{ri})}}{2\pi KL}$$

The thermal resistance concept may be used for multiple layer cylindrical walls just as it was used for plane wall.

For three layers system as shown in figure:

$$R1 = \frac{\ln\left(\frac{r^2}{r_1}\right)}{2\pi K1 L}$$

$$R2 = \frac{\ln\left(\frac{r3}{r2}\right)}{2\pi \ K2 \ L}$$

$$R3 = \frac{\ln\left(\frac{r4}{r3}\right)}{2\pi \ K3 \ L}$$

$$q_{r} = \frac{(Ti - To)}{\frac{\ln{(\frac{r^{2}}{r_{1}})}}{2\pi K_{1} L} + \frac{\ln{(\frac{r^{3}}{r_{2}})}}{2\pi K_{2} L} + \frac{\ln{(\frac{r^{4}}{r_{3}})}}{2\pi K_{3} L}} \qquad qr = \frac{(Ti - To)}{R1 + R2 + R3}$$

Or
$$q_r = \frac{2\pi L(Ti - To)}{\frac{\ln{(\frac{r^2}{r_1})}}{K_1} + \frac{\ln{(\frac{r^3}{r_2})}}{K_2} + \frac{\ln{(\frac{r^4}{r_3})}}{K_3}}$$

$$qr = \frac{(Ti - To)}{R1 + R2 + R3}$$

2- Spheres:

Spherical system may also be treated as one dimensional when the temperature is a function of radius only .The heat flow is then:

$$q_{r} = -k A_{r} \frac{dT}{dr} , A_{r} = 4 \pi r^{2}$$

$$q_{r} = -k (4 \pi r^{2}) \frac{dT}{dr} , q_{r} \frac{dr}{r^{2}} = -4\pi k dt$$

$$q_{r} = \frac{(Ti - To)}{\frac{(\frac{1}{r_{1}})}{4\pi k}} , q_{r} = \frac{(Ti - To)}{R1}$$

$$q_{r} = \frac{4\pi k (Ti - To)}{4\pi k (Ti - To)}$$

Or $q_r = \frac{4\pi k(Ti-To)}{\left(\frac{1}{ra}\right)-\left(\frac{1}{ro}\right)}$

For Two layers spheres

$$qr = \frac{4\pi(Ti - To)}{\frac{1}{k_1} \left\{ \left(\frac{1}{r_1} \right) - \left(\frac{1}{r_2} \right) \right\} + \frac{1}{k_2} \left\{ \left(\frac{1}{r_2} \right) - \left(\frac{1}{r_3} \right) \right\}}$$

Example: A hot pipe $k=40 \text{ W/m.}^{\circ}\text{C}$ having an inside surface temperature of 300 °C has an inside diameter 10 cm a wall thickness 6 mm is covered with 5 cm layer of insulation having $k=0.2 \text{ W/m.}^{\circ}\text{C}$ followed by 3 cm layer of insulation having $k=0.4 \text{W/m.}^{\circ}\text{C}$. The outside temperature of insulation is 40 °C. Calculate the heat lost per meter of length.

Solution

$$r1=5 \text{ cm} = 5 \times 10^{-2} \text{ m}$$
 $r2 = 5 + 0.6 = 5.6 \text{ cm} = 5.6 \times 10^{-2} \text{ m}$

$$r3 = 5 + 0.6 + 5 = 10.6 \text{ cm} = 10.6 \times 10^{-2} \text{ m}$$

$$r4=5+0.6+5+3=13.6 \text{ cm} =13.6 \times 10^{-2} \text{ m}$$

$$\frac{\mathbf{q}}{\mathbf{L}} = \frac{(Ti - To)}{R1 + R2 + R3}$$

$$R1 = \frac{\ln{(\frac{r^2}{r_1})}}{2\pi K1} = \frac{\ln{(\frac{5.6 \times 10^{^{\circ}} - 2}{5 \times 10^{^{\circ}} - 2})}}{2\pi * 40} = 4.5 \times 10^{-4}$$

$$R2 = \frac{\ln\left(\frac{r3}{r2}\right)}{2\pi K2} = \frac{\ln\left(\frac{10.6 \times 10^{\circ} - 2}{5.6 \times 10^{\circ} - 2}\right)}{2\pi * 0.2} = 0.508$$

R3=
$$\frac{\ln{(\frac{r4}{r3})}}{2\pi K3}$$
 = = $\frac{\ln{(\frac{13.6 \times 10^{\circ} - 2}{10.6 \times 10^{\circ} - 2})}}{2\pi * 0.4}$ = 0.0992

$$\frac{q}{L} = \frac{300-40}{4.5 \times 10^{-4}+0.508+0.0992} = 427.87 \text{ w/m}$$

Example: A hollow sphere is constructed of stainless steel k= 15 W/m.C with an inner diameter of 4 cm and outer diameter of 8 cm the inside and outer temperature is 100 and 50 C respectively. Calculate the heat rate

Solution

$$r1 = 0.02 \text{ m}$$
 $r2 = 0.04 \text{ m}$

$$q_{r} = \frac{4\pi k(Ti - To)}{\left(\frac{1}{r_{1}}\right) - \left(\frac{1}{r_{2}}\right)}$$

$$q_r = \frac{4\pi * 15(100 - 50)}{\left(\frac{1}{0.02}\right) - \left(\frac{1}{0.04}\right)} = 376.8 \text{ W}$$

Example: 1.6 cm diameter of stainless steel pipe k=15 w/m.°C of 0.2 cm thick is insulated with thick plastic cover k=0.15 w/m.°C .What thickness of insulation must be added to ensure that 146w/m. The difference temperature is 80 °C.

Solution

$$R1 = 0.8 \text{ cm}$$

$$r2 = 0.8 + 0.2 = 1 \text{ cm}$$

$$r3 = 0.8 + 0.2 + x = 1 + x \text{ cm}$$

$$\frac{q}{L} = \frac{(Ti - To)}{R1 + R2} \longrightarrow 146 = \frac{80}{R \text{ total}} \longrightarrow R \text{ total} = 0.548$$

$$R \text{ total} = R1 + R2 = 0.548$$

R1=
$$\frac{\ln{(\frac{r^2}{r_1})}}{2\pi K1} = \frac{\ln{(\frac{1}{0.8})}}{2\pi \times 15} = 2.368 \times 10^{-3}$$

$$R2 = R total - R1$$

$$R2 = 0.548 - 2.368 \times 10^{-3} = 0.546$$

R2=
$$\frac{\ln{(\frac{r^3}{r^2})}}{2\pi K2}$$
 \longrightarrow 0.546 = $\frac{\ln{(\frac{r^3}{1})}}{2\pi * 0.15}$

$$\ln r3 = 0.514$$

$$r3 = 0.8 + 0.2 + thickness$$

Thickness = 0.672 cm